Facile Synthesis of Rapidly Degrading PEG-Based Thiol-Norbornene Hydrogels

Fang-Yi Lin and Chien-Chi Lin*

Cite This: ACS Macro Lett. 2021, 10, 341−345

ABSTRACT: An alternate synthesis route was developed to prepare norbornene-functionalized poly(ethylene glycol) (PEG) from reacting multiarm PEG with carbic anhydride. The macromer, PEGNBCA, permits photo-cross-linking of thiol-norbornene hydrogels with kinetics comparable to conventional PEGNB macromer. In addition, PEGNBCA provides an additional carboxylate group for further conjugation with amine-bearing molecules. Interestingly, PEGNBCA thiol-norbornene hydrogels are highly susceptible to hydrolytic degradation through enhanced ester hydrolysis. The ester linkage is further weakened after the secondary conjugation, resulting in extremely rapid degradation of PEGNB hydrogels. More importantly, the degradation can be readily adjusted via tuning macromer compositions, with complete degradation time ranging from hours to weeks. The PEGNBCA hydrogels are also highly cytocompatible toward various cell types, providing opportunities for future applications in tissue engineering and advanced biofabrication.

Poly(ethylene glycol) (PEG)-based hydrogels are widely used in tissue engineering and biofabrication for their excellent biocompatibility,1 adaptable cross-linking mechanisms, and readily tunable physiochemical properties. PEG-based hydrogels are particularly desirable in tissue regeneration,2,3 controlled release,4 and biosensor applications.5 Conjugation of functional groups (e.g., acrylate, norbornene, vinylsulfone, maleimide) on the termini of PEG chains is necessary to permit their cross-linking into hydrogels. On the other hand, labile motifs (e.g., poly(lactic acid), PLA)6 are routinely copolymerized with functionalized PEG to render the otherwise stable network hydrolytically labile. Alternatively, hydrolytic degradation of PEG-based hydrogels may be engineered by synthesizing ester-containing cross-linkers with different hydrolytic susceptibility, such as groups with steric hindrance, local hydrophobicity, and electron-withdrawing moieties.7,8

Among the various cross-linking chemistries, PEG-based hydrogels fabricated by orthogonal thiol-norbornene photo-polymerization are increasingly used in drug delivery and tissue engineering applications.8 In particular, multiarm PEG-norbornene (PEGNB) can be cross-linked into an idealized network using a multifunctional thiol cross-linker through a radical-mediated thiol-norbornene reaction initiated by ultraviolet light,9−12 visible light,13,14 or enzymatic reaction.15 We and others have prepared biomimetic PEG-based thiol-norbornene hydrogels for a variety of biomedical applications.16−20 In all prior studies, utilizing PEGNB macromers, NB group functionalization was typically achieved between 5-norbornene-2-carboxylic acid (NB-acid) and either PEG hydroxyls (i.e., esterification) or PEG amines (i.e., carbodiimide chemistry).21 The former reaction produces ester linkages (i.e., PEGeNB), whereas the later yields stable amide bonds (i.e., PEGaNB). Compared with hydrogels cross-linked by PEGaNB, the more hydrolytically labile PEGeNB (referring to PEGNB thereafter) hydrogels improved survival, proliferation, and spreading of human mesenchymal stem cells (hMSCs).

To functionalize hydrolytically labile PEGNB (Figure 1A, X = H) through Steglich esterification,22 the current synthesis requires that NB-acid being activated with N,N′-dicyclohexylcarbodiimide (DCC) to form the O-acylisourea intermediate (Figure 1A-I). The intermediate is filtered into PEG-hydroxyls in the presence of pyridine and 4-dimethylaminopyridine (DMAP),9 followed by an overnight reaction and precipitation in cold ether. To maximize the degree of substitution (DS), multiple efforts were developed, such as extended refluxing PEG in toluene to remove excess bond water, blanketing the reaction with inert gas, conducting back-to-back reactions, and limiting the reaction to smaller batches (<5 g). Unfortunately,

Received: January 28, 2021
Accepted: February 3, 2021
Published: February 9, 2021

https://dx.doi.org/10.1021/acsmacrolett.1c00056
ACS Macro Lett. 2021, 10, 341−345
© 2021 American Chemical Society
reaction efficiency of PEGNBCA toward thiols. The reduced thiol-norbornene reaction efficiency of PEGNBCA may be a result from the additional carboxylic acid group that reduces the local pH value. This is consistent with a recent report by Colak et al., where it was demonstrated that thiol-norbornene reaction efficiency was lower with a carbonyl anhydride derivative functionalized with hexane-1,6-diamine.26 Nonetheless, this protocol offers a greener and more user-friendly route to the synthesis of norbornene-functionalized PEG for orthogonal thiol-norbornene hydrogel cross-linking.

Ester-linked PEGNB hydrogels are known to undergo slow and predictable hydrolytic degradation (Figure 2A).7 Indeed, 4 wt % of PEGNB-DTT hydrogels degraded partially \((G'G_0' \sim 25\%\) after 8 days of incubation (Figure 2B), a result in agreement with our earlier work.7 To our surprise, however, hydrogels cross-linked by the PEGNBCA degraded much faster than the PEGNB counterpart (Figures 2B and S3). After further analysis of the hydrolytic degradation kinetics with a pseudo-first order degradation kinetics \((G'G_0' = \exp(-k_{\text{hyd}}t))\),9 we obtained a hydrolysis kinetic rate constant \(k_{\text{hyd}}\) of 0.035 \(d^{-1}\) and 0.164 \(d^{-1}\) for PEGNB and PEGNBCA gels, respectively (Figure 2C). As the conventional thiol-norbornene hydrogels did not degrade sufficiently in the first few days, the fitting for PEGNB gel was not ideal \((R^2 = 0.42)\). However, the \(k_{\text{hyd}}\) value (0.035 \(d^{-1}\)) was within the range of previous results with longer term degradation \((i.e., k_{\text{hyd}} = 0.02-0.07 \text{ d}^{-1})\).9 The \(R^2\) value for curve fitting of PEGNBCA degradation, on the other hand, reached over 0.95, indicating that the degradation of PEGNBCA gels was a result of ester bond hydrolysis.27 Compared with PEGNB-DTT hydrogels, PEGNBCA-DTT hydrogels degraded much faster and reached complete degradation within 2 weeks (data not shown). In addition to the moduli change, the degradation was also tracked by the swelling ratio \((Q)\) (Figure S3). In particular, the swelling ratio of PEGNB-DTT and PEGNBCA-DTT hydrogels was comparable \((Q \sim 30)\) on day 1. However, the swelling ratio of PEGNB-DTT hydrogels continuously increased while that of PEGNBCA-DTT hydrogels remained relatively unchanged during the 8 days incubation course. The accelerated hydrolysis of PEGNBCA gels was likely due to the presence of an additional carboxylic acid group that destabilizes the ester bonds. The faster degradation kinetics of

Figure 2. Hydrolytic degradation of PEGNB/PEGNBCA hydrogels. (A) Schematic of ester bond hydrolysis. (B) Characterization of hydrogel shear moduli changes \((i.e., G'/G_0') as a function of time. (C) Parameters of pseudo-first order hydrolytic degradation kinetics.
PEGNB_{CA} hydrogels present opportunities for future applications when controllable hydrogel degradation is desired.

PEG-based thiol-norbornene hydrogels are known for their high cytocompatibility for in situ cell encapsulation^{8,12,16,28}. The PEGNB_{CA} hydrogels also showed excellent cytocompatibility, as exemplified by the encapsulation of human induced pluripotent stem cells (hiPSC), dental pulp stem cells (DPSC), and PANC-1 human pancreatic cancer cells (Figure 3). All hydrogels were cross-linked by matrix metalloproteinase (MMP)-sensitive peptide linker (i.e., KCGPQG[*]F*WGQCK, *cleavage site) to permit cell-mediated matrix remodeling and immobilized with 1 mM RGDS peptide to support cell survival. Live/Dead staining results showed that very limited number of dead cells were visible for all cell types following encapsulation. After 7 days of in vitro culture, hiPSC and PANC-1 cells proliferated to form multicellular spheroids, while DPSC exhibited spreading morphology, indicating extensive cell-mediated matrix cleavage. These results have established PEGNB_{CA} hydrogels as an attractive alternative to intermolecular hydrophobic interactions between isopropyl groups. Nonetheless, the degradation of PEGNB-I hydrogels at 37 °C by shear moduli changes (G′/G″₀) and swelling ratio (Q). Curve fittings represent pseudo first order ester hydrolysis kinetics. (D) Parameters of pseudo-first order hydrolytic degradation kinetics. All hydrogels were cross-linked by DTT (R = 1) with 1 mM LAP and 2 min 365 nm light exposure (5 mW/cm²).

Nevertheless, PEGNB-Xs and PEGNB-X hydrogels behaved quite differently in aqueous environment. We determined the degradation rate of PEGNB-D, PEGNB-T, and PEGNB-I hydrogels (Figure 4C). At 37 °C, PEGNB-D and PEGNB-T hydrogels fully degraded within 2 h, while PEGNB-I hydrogels degraded in about 10 h (Figure 4C). It is worth noting that the three sets of gels were cross-linked to have similar initial shear moduli (G′₀ ~ 1.5 kPa, Figure 4B). Hydrogels cross-linked by PEGNB-D and PEGNB-T degraded extremely fast, with k_{hyd} = 0.9 and 1.39 h^{−1}, respectively (Figure 4D). These represented ~50- to ~200-fold faster degradation rate than that with PEGNB_{CA} hydrogels (Figure 2C. k_{hyd} = 0.164 d^{−1} or 0.0068 h^{−1}). Interestingly, compared with the T or D conjugate, I conjugation slowed gel degradation considerably (Figure 4CD, k_{hyd} = 0.35 h^{−1}). Note that the first data point of PEGNB-I was neglected in the exponential fitting, since G′ slightly increased in the first hour of incubation, potentially due to intermolecular hydrophobic interactions between isopropyl moieties. Therefore, we measured the swelling ratio (Q) of these hydrogels to gain insight into their degradation behavior. There was limited increase in swelling ratio in the first 2 h, after which the swelling increased substantially (Figure 4C). The limited initial swelling and increase in the initial G′ could be attributed to the hydrophobic interactions between isopropyl groups. Nonetheless, the degradation of PEGNB-I hydrogels could still be described by a pseudo-first order degradation kinetics (R² = 0.98. Figure 4D). Furthermore, the hydrolytic degradation of PEGNB-X hydrogels appeared to be temperature-dependent and the degradation rates were reduced at room temperature (Figure S4).

Besides L-dopamine, tyramine, and isopropylamine, we also conjugated longer aliphatic amines, such as hexylamine and stearamine, as well as aromatic benzylamine to PEGNB_{CA}. However, the conjugation of these long or bulky hydrophobic amines were not as successful and the norbornene concen-
tation was drastically decreased after switching the dialysis solvent from methanol to water (data not shown). As a result, hydrogel cross-linking using PEGNB-hexylamine, PEGNB-stearamine, and PEGNB-benzylamine was not feasible since the norbornene moiety on these PEGNB-X was not sufficiently high (data not shown).

The facile cross-linking and rapid degradation of the PEGNB-X hydrogels offer an opportunity to tune hydrogel degradation precisely by cross-linking with different cross-linkers and mixing PEGNB-X with PEGNBCA while fixing the total PEGNB content (Figure 5). It is well-known that thiol–ene hydrogel cross-linking efficiency and hydrolytic degradation kinetics are both significantly affected by the functionality and structure of the cross-linkers. To demonstrate this, we compared the cross-linking and degradation of PEGNB-D hydrogels cross-linked by either tetra-functional (i.e., PEG4SH) or bifunctional thiol (i.e., DTT). As expected, at an identical PEGNB-D macromer content (i.e., 4 wt %), hydrogels cross-linked by PEG4SH were considerably stiffer ($G'_{0} \sim 14$ kPa) than that formed with DTT ($G'_{0} \sim 1.6$ kPa, Figure 5A). While these two sets of gels were cross-linked with an identical amount of norbornene ester bonds, the degradation kinetics were significantly different, with PEG4SH-cross-linked gels degraded roughly 3 times slower than that with DTT (Figure 5B, Table S3). These results implied that the degradation of the hydrogels was primarily governed by the bulk hydrogel properties (e.g., swelling, cross-linking density), rather than merely by the kinetics of ester bond hydrolysis.

In addition to tuning hydrogel degradation by varying the functionality of the cross-linker, the degradation can be further regulated by mixing PEGNB-D with PEGNB_{CA} at different ratios during hydrogel fabrication. At a fixed total PEGNB content (e.g., 4 or 10 wt %), we showed that the inclusion of PEGNB-D did not alter hydrogel initial cross-linking ($G'_{0} \sim 1.6$ and 17 kPa for 4 wt % (soft) and 10 wt % (stiff) hydrogels, respectively, Figures 5C and S5A). However, the degradation kinetics were decoupled from the degree of network connectivity (Figures 5D and S5B). For soft hydrogels, the degradation period ranged from 3 to 14 days (Figure 5B). Notably, there was a significant drop in G' early on (1–2 days) when PEGNB-D was included. For soft hydrogels incorporated with more than 25% PEGNB-D, complete gel degradation occurred overnight (data not shown). These results implied that the rapid ester hydrolysis of PEGNB-D quickly loosened the hydrogel network, leading to accelerated degradation in the nearby PEGNBCA macromer. Similar degradation was observed in stiff hydrogels. With these highly cross-linked networks, the degradation was further prolonged to 25 days (Figure S5B). Interestingly, stiff hydrogels still completed degradation overnight when PEGNB-D was higher than 50%. During this extended incubation, hydrogels notably swelled and discolored, likely due to oxidation of the residual dopamine (Figure S6). The cytocompatibility of soft PEGNBCA/PEGNB-D hydrogels at different PEGNB-D and PEGNBCA ratios were further demonstrated by encapsulation of PANC-1 cells (Figures S7 and S8). It is worth noting that the hydrogels with higher than 25% PEGNB-D degraded overnight following encapsulation. Hence, cell viability staining was performed right after the encapsulation. For 25% PEGNB-D hydrogels, the cell viability was tracked over 3 days as the gels degraded in a slower rate. In all conditions, PEGNB-D hydrogels demonstrated exceptional cytocompatibility. Overall, this study established that it is possible to decouple the initial hydrogel moduli with their degradation rate, a unique feature not easily achievable by conventional covalent hydrogels.

In summary, we present a robust and user-friendly protocol to synthesize norbornene-functionalized PEG via using carbic anhydride. The method eliminates the use of an extremely pungent odor of norbornene acid. The additional carboxylic moieties, giving rise to PEGNB-X macromers. PEGNBCA and PEGNB-X were readily cross-linked by diethiols into thiol-norbornene hydrogels liable to accelerated yet tunable hydrolytic degradation. The facile synthesis and cross-linking, excellent cytocompatibility, and fast yet highly tunable degradation of PEGNBCA and PEGNB-X hydrogels provide opportunities in future tissue engineering applications. Furthermore, these hydrogels preserve all benefits of thiol-norbornene photogelation, including the spatiotemporally tunable cross-linking. This property has the potential in advanced biofabrication since the highly cytocompatible PEGNB-X hydrogels can be exploited as sacrificial hydrogels to control cell distribution by means of microfluidics and 3D bioprinting.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00056. Experimental section, norbornene substitution ratio quantification, and PEGNB-R’H NMR spectra (PDF)
AUTHOR INFORMATION

Corresponding Author
Chien-Chi Lin — Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States; orcid.org/0000-0002-4175-8796; Email: lincc@iupui.edu

Author
Fang-Yi Lin — Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States; orcid.org/0000-0002-7235-2596

Complete contact information is available at: https://pubs.acs.org/10.1021/acsmacrolett.1c00056

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project was supported by the National Cancer Institute of the National Institutes of Health (R01CA227737). The authors thank Mr. Matthew Arkenberg for assistance in encapsulation of iPSCs and Dr. Chandler Walker for providing DSPCs.

REFERENCES